
* Fermi National Accelerator Laboratory

FERI1III,ALI-Pub-87138

2380.000

Use of New Computer Technologies
in Elementary Particle Physics*

I. Gaines and T. Nash

Advanced Computer Program

Fermi National Accelerator Laboratory

P.O. Box 500, Batavia, Illinois 60.510

February 20,1987

*Submitted to the Annual Review of Nuclear and Particle Science

e Operated by Universities Research Association Inc. under contract with the United Slates Department of Energy

CONTENTS

1. INTRODUCTION

1.1 The Triggering Problem

2.2 The Off Line Computing Problem

1.3 The Parallel Processors of Particle Physics

2. ON LINE SPECIAL PROCESSORS

2.1 Large Ezperiment Trigger Hierarchies

2.2 Low and Midlevel Triggers

3. HIGH LEVEL LANGUAGE EVENT PROCESSORS

3.1 Emulators

9.2 Multi Microprocesscrs

3.3 On Line Applications: The Interface Problem

S.4 Lattice Gauge Engines

4. USSOLVED PROBLEMS: THE FUTURE 23

Acknowledgments 26

Literature Cited 27

Table 1 32

12

12

15

20

21

USE OF NEW COMPUTER TECHNOLOGIES IN
ELEMENTARY PARTICLE PHYSICS

1. INTRODUCTION

Irwin Gaines and Thomas Nash
Advanced Computer Program

Fermi National Accelerator Laboratory
Batavia, Illinois 60510

Elementary particle physics and computers have progressed together for as long
as anyone can remember. The symbiosis is surprising considering the dissimilar
objectives of these fields, but physics understanding cannot be had by simply
detecting the passage of particles. It requires a selection of interesting events and
their analysis in comparison with quantitative theoretical predictions. The
extraordinary reach made by experimentalists into realms always further removed
from everyday observation frequently encountered technology constraints. Pushing
away such barriers has been an essential physicist activity from long before the
development of the first practical electronic AND gates as coincidence circuits in
1930 by Rossi (Figure 1) (1). This article describes the latest episode of this
history: the development of new computer technologies to meet the huge and
increasing appetite for computing by experimental (and theoretical) high energy
physics.

The experimenters’ computing needs have not been a sudden development.
The long term growth in requirements is due to the increase in1;2nergy at which
experiments are carried out. As the center of mass energy, s , increases, so
does the complexity and, typically, the amount of data which must be analyzed.
(Secondary particle multiplicities, total cross sections and accelerator luminosities
all tend to increase with energy.) As the haystack has grown, so has the needle
shrunk. With bhe standard model becoming more established, interesting physics
to research enters at lower cross sections.

The problem has deep causes and exposing them gives a hint of the future
(see Section 4). Fundamentally, the physicist task of selection and analysis
remains the same whether using protractor and ruler for measurement in a cloud
chamber or a $100 million detector at a colliding beam interaction point. This
observational, pattern recognizing task .was conceived by the ~human brain as an
extension of the theoretical pattern recognition that is the creative core of
science. Except for the quantity of data now involved, this is an activity better
matched to the capability of a brain than that of a computer. We have applied
the brute force numerical abilities of computers to very non-numerical problems.
One acceptable definition of the fundamental goals of the research field known as
Artificial Intelligence (AI) is the development of machines that will attack such
non-numerical problems in a more direct manner. Real success toward this key
AI ambition has certainly been hard to come by, but its importance for high
energy physics (and science in general) cannot be overestimated.

Experiment computing has traditionally been divided into the on line task of
trigger selection (see Sections 1.1 and 2) and off line reconstruction and analysis

(see Sections 1.2 and 3). However, the distinction between on and off line is
becoming softer as parallel processors programmed in high level languages are
applied more frequently in real time. Given adequate data rate capacity, a
computer does not recognize whether it is being fed from a real time buffer or a
magnetic tape at a later time. The major concern on line is in the validity of
criteria and programming which throw away data, forever. Intensive real time
high level filters are, today, used with reluctance and generally only in later runs
of experiments. The need for such sophisticated on line selection will become
more and more compelling in the future. Artificial Intelligence concepts, such as
program verification, again have fundamental relevance.

Theorists joined experimenters with large computing needs when lattice
gauge theory was advanced by Wilson(Z) as a means for numerically solving
Quantum Chromodynamics (QCD). Widely accepted as the theory of the Strong
Interactions, QCD cannot be solved perturbatively because of its large coupling
constant. With existing algorithms and computers, precise lattice predictions of
baryon masses, for example, seem tantalizingly out of reach; estimates like
“70,000 Cray years” have been heard. Given their importance, the hope is that
improved technology and algorithms will put these calculations on a sensible time
scale. In Section 1.2 we introduce the lattice gauge problem from the computing
perspective, and in Section 3.4 we describe processor efforts in this area.

Concluding the Introduction in Section 1.3, we discuss the place of
elementary particle physics parallel computers in the modern world of computers.
What seems like a surprising commonalty in the approaches being taken to
computing for experiment and theory is found to be no more than a
manifestation of the underlying structural regularity of science.

1.1 The Triggering Problem

As early as 1933, some cosmic ray experiments triggered cloud chambers on
coincidences of pulses from Geiger tubes(3). Set, for many years, triggering was
not a common experimenter’s concern. Some work was carried out by counting
pulses from Geiger and scintillation counters; much of the rest depended on
detectors with indiscriminate sensitivity. Emulsions recorded tracks from the
moment they were poured until they were developed.~ There being no correlation
of the sensitive time of these detectcxs with any specific interaction known to be
occurring, the events they recorded were pot luck.

The first spark chambers revolutionized physics in 1959(d). The chamber
was fired and pictures taken only when an electronic signal indicated that an
appropriate interaction was likely to have happened. The “trigger” signals were
based on a simple coincidence and or-ing of the pulses coming from a number of
photomultiplier tubes attached to scintillating material. The time available for

these decisions was under 300 nsec so that the 10,000 or SO volt spark chamber
pulse could be formed in time. No longer was the leisurely tenth of a second
time scale of cloud chamber triggers acceptable. The simple, but very high speed,
electronics required to make these decisions was an outgrowth of the circuits
used in a generation of “counter” experiments. By the time spark chambers took
on a strong role, the standardization of “fast logic” electronics which could make
a coincidence decision in 1-2 nsec was well underway.

Direct electronic spark chamber read out required the first use of on line
computers to write the data onto magnetic tape, still the primary data storage
medium of particle physics. Spark chambers were typically fired less than ten
times per second and the track multiplicities that the direct read out systems
could support was limited. The data analysis from these experiments did not
overwhelm computer centers already used to the load from bubble chambers. In
the 703 this situation changed as energies, multiplicities, and beam intensities
increased and new detectors appeared that could support much higher rates. The
irony was that, unlike spark chambers, these new detectors, multiwire
proportional chambers (MWPCs), were untriggered devices. Yet, triggering was
necessary because the on line computers could not keep up.

Triggers have another essential reason in experiments using drift chambers, a
close relative of MWPCs in which the time for ions to drift toward a wire is
measured to determine precisely the location of a passing particle. The time to
digital converters (TDCs) that digitize this data require time reference signals.
Similarly, analog to digital converters (AD&) measure phototube pulse height,
proportional to the shower energy in a calorimeter. The ADCs require a gate to
define the time Over which the phototube signal is to be integrated. The
digitization process takes up valuable experiment live time (from a few to
usually a few hundred psec) during which the experiment cannot accept new
events. Therefore, the signal to gate the digitizers must be made selectively, only
when the probability of an interesting event being present is high.

Triggering electronics appear in large experiments in a variety of data rate
environments and time domains as they carry out different functions. The
triggers are intertwined with digit~ization, monitoring and data acquisition
electronics in an extraordinarily complicated system. The Collider Detector at
Fermilab (CDF), as an example of this scale of effort, is spending Over $1
million on triggers of all kinds, about $12 million on data acquisition electronics
including digitizers, and Over $2 million on large on line data logging and
monitoring computers and consoles(j).

Triggers are generally organized in a multi level structure. Passing from
each level is only as much data as following electronics, with tasks of increasing
complexity, can handle. In this article, we will classify triggers as “low level”,
“middle level”, and “high level”. In any specific experiment the distinction
between these levels may be fuzzy. The levels may be compressed or expanded
or bypassed, subject to the requirements and creativity of the experiment. ‘LI,ow

level triggers” determine when a basic interaction of interest has been detected
at a rate that is appropriate to gate digitizers. An important limitation is that
the selection can only be based on parallel information from individual
subdetectors, never on global and tracking information which is only available at
later stages. A “middle level trigger” is, for our purposes, one which neither is

used to gate digitizers nor is programmed in a high level language like Fortran.
A trigger programmed in a high level language is here defined as a “high level
trigger”. The purpose of both middle and high level triggers is to reduce the
amount of data ultimately stored for off line analysis.

In sum, the broad reasons why modern experiments require triggers are: to
establish digitizer time references; to reduce the experiment dead time due to on
line data recording; and to limit the amount of data which must be analyzed off
line. Future experiments show no signs of becoming any less dependant on
sophisticated real time selection. In fact, for reasons like those affecting data
analysis, the requirements for trigger reductions are becoming more severe with
time. Data rates are increasing faster than the capacity of digitizing and data
recording systems available at acceptable cost.

1.2 The Off Line Computing Problem

An experiment’s first off line computing task is reconstructing raw detector
signals into useful physics information about each interaction event. The raw
data consists of digitized pulse sizes and times as well as arrays of bits
indicating whether a wire or counter was hit. This must be transformed into the
three momentum, type, and originating (vertex) location of each particle and the
error matrices for these quantities. The reconstructed data is the starting point
for the real physics: analysis, in terms of theoretical or phenomenological models,
of accumulated event distributions over relevant kinematical variables.

The two phases, reconstruction and analysis, pose very different problems.
The first demands huge amounts of computation with human activity limited to
monitoring of progress and quality. The second requires heavy, hopefully efficient,
human interaction and a far more moderate, though significant, computing load.
Development of new computers for experiments has been primarily directed at
reconstruction. The analysis phase has been handled by commercial computers.
Here, too, the situation is in sight of becoming intolerable because of inefficient
use of physicist time, and attention is being directed at specialized solutions
(Section 4).

The most common attribute of reconstruction software is that almost all
such programs have been written specifically for one detector with its special
geometry, physics, background and rate considerations (and the whims of its
physicists) in mind. Tracks are built up from position coordinates in wire
chambers generally in a series of stages. Small curve segments, for example, may
be projected inbo lists of other segments to find matches and produce larger

5

segments. The process proceeds until all usable detector hits are accounted for.
Energy in single calorimeter detector channels is identified with clusters of
neighbors showing some energy and with nearby wire chambers. The tracks must
be associated with Cerenkov counter and calorimetry information to establish
particle type and account for as much interaction energy as possible. Least
squared fits throughout the program estimate the values of the required physical
quantities.

This whole, extensive, hand crafted process is complicated by the need to
consider a variety of subtle, detector specific effects such as noise and inefficiency
and ambiguities which result from several particles hitting a small region. The
programs, not surprisingly, are complex and long. They are generally
unstructured, with frequent conditional branches and other features horrifying to
computer scientists. Fixed target experiments with reconstruction programs larger
than 25,000 lines are the rule, and for big colliding detectors 100,000 lines are
typical. Large memory banks are required just to manipulate lists of temporary
data during matching and fitting operations. Calibration constants can consume
several Megabytes of memory. A 6 Mbyte memory requirement for a colliding
beam detector reconstruction program is no longer considered unreasonable by
computer centers.

Reconstruction programs require extensive computation primarily because
their brute force pattern recognizing approach requires large and deeply nested
loops to test all reasonable combinations of detector hits for possible association
into tracks or clusters for large numbers of events. Table I gives representative
examples of the average computer time taken per event by a number of
experiments, the number of events they have or anticipate having per calendar
year of operation, and the total computer time required per calendar year(g).
Clearly this amount of computing is not tenable with conventional computers
within the limited budget of a basic science. This situation has prompted
development of more cost effective solutions by the high energy physics
community.

In lattice gauge theory calculations the four space time dimensions are
mapped onto a grid of finite spacing(9). Monte Carlo methods are then used to
evaluate expectation values of physically relevant quantities using Feynman’s path
integral formulation. For QCD, products of SU(3) matrices must be evaluated to
determine how the action changes at each lattice step. This must be done for
each SU(3) gauge field variable -- coxesponding to links in the lattice -- to get
a new configuration. With conventional algorithms, at least 10,000 such sweeps
are required (and, perhaps orders of magnitude more) to insure that the final
configuration is statistically uncorrelated with the starting point. The total for a
state of the art 164 site lattice is about 250 million floating point operations per
sweep or at least 2.5 x lOI per calculation. Depending on hardware utilization
factors, this corresponds to 4-8 hours per calculation on a > $10 million, > 400
Mflops (million floating point operations per second), two processor Cray XMP.

Even this amount of computing provides crude calculations, accurate at best to
loo/ and must be repeated frequently as different observables are studied.

The immediate, if limited, goal of this activity is a phenomenological

understanding of the theory. Even for this, an order of magnitude more precision
is required. In the long run, lattice gauge tantalizes with the opportunity to test
with precision a fundamental theory of physics which cannot be tested otherwise.
Much larger lattices will be required and quark loop effects will have to be
included, both increasing computing requirements enormously. For example, a
10004 lattice, which acceptably contains an entire proton, requires a factor of 16
million more time than current 164 lattices -- and significantly more yet when
including quark effects. The truth is that the extrapolation of these requirements
from present understanding is so large that accurate estimates are impossible. It
is clear, however, that anticipated hardware improvements alone will not be
enough. Much will have to come from better algorithms, and research into these
is getting as much attention (and computer time) as phenomenological studies.
Already new algorithms (such as the Langevin method(fOj) are reducing the
number of sweeps required to decorrelate. The large computing demand has here
also led to the development of specialized processors, many of which have rather
restrictive algorithm specific architectures.

1.9 The Parallel Processors of Particle Physics

The very regular structures of the two critical high energy physics problems just
described invite parallel computer solutions. Experimenters are using simple
architectures with numbers of highly cost effective, stripped down computers to
process raw data. Single events are sent to individual processors which pass the
results to a host computer to record on tape. Until recently, the individual
processors were all of a form called “emulators” because their hardware was
arranged to “emulate” the instruction set of a large main frame family of
computers (generally IBM). This allowed the users of these machines to take
advantage of the software tools developed for the commercial computers, in
particular the compilers. .4 newer approach uses larger numbers of single board
computers based on commercial 32 bit microprocessors which are supported by
their own Fortran compilers. Theorists have been building parallel computers,
also often based on microprocessors in grid architectures, that naturally match
their problem.

In order to understand where these particle physics computers fit in the
modern world of computers, let’s look at a computer taxonomy from a
physicist’s perspective. It is commonly implied that a computer must be either
special or general purpose. A few, such as the low level triggers of high energy
physics and military signal processors, are uniquely able to carry out one task.
However, any programmable computer can execute different programs with
different tasks. In this sense they are all general purpose. Even large commercial

computers are designed to be efficient at specific tasks required by different
portions of the marketplace, transactions or vector computations, for example. In
this sense they are all special purpose. The physics machines, though driven by a
special interest in a particular class of problems, are efficient at a large number
of tasks. They fall somewhere in the middl e of what is really a spectrum of

generality.
Traditional computers are referred to as Single Instruction, Single Data

stream (SISD) machines. Big vector computers like those made by Cray are
SIMD machines since a Single Instruction operates on elements from hlultiple
Data streams. Truly parallel machines like experimentalists’ computers have
Multiple Instruction streams operating independently on Multiple Data streams
(M!MD). Some specialized lattice gauge processors, however, operate in lock step
with essentially a single instruction stream on all lattice points.

What probably distinguishes physicists’ computers most is that they are
explicitly parallel with the individual processors primarily having their own local
memory rather than sharing a global memory. The direction taken by most
parallel computer research outside physics has been toward machines with many
processors accessing a common, “global”, memory through a complex switch
which handles the necessary synchronization. Much computer science effort is
directed at supporting implicit, automatic, decomposition of algorithms onto
parallel processors which share memory. The idea of identifying the structure of
a problem and explicitly mapping it onto a parallel computer architecture has
been much easier for physicists to accept than for computer scientists. In an
extensive studyl111, Fox has demonstrated that most scientific problems can be
explicitly mapped onto certain local memory gridlike architectures (hypercubes) so
they make efficient (usually greater than 90%) utilization of the hardware. The
interconnection of local memory processors is by nature simpler than global
switches and, therefore, amenable to larger numbers of low cost processors such
as single board computers. The willingness of physicists to accept explicit
parallelism has been rewarded with access to what are the most cost effective
means of high level language computing presently available, 32 bit microprocessor
and floating point arithmetic integrated circuits. In a phrase, the computers of
particle physics can be classified as primarily somewhat specialized, local memory,
eqdicitly paralkl computers.

2. OX LINE SPECIAL PROCESSORS

When designing triggers for most experiments, there is a conflict between two
requirements, high speed and flexibility. This conflict is resolved with a hierarchy
of increasingly complex triggers. Each successive level makes more detailed
decisions requiring greater amounts of time on fewer events. Figure 2 shows the
triggering hierarchy for the CERN UAI experiment(f2,l. Early levels of the
triggers, while often blindingly fast and quite powerful, are truly specialized

processors. They lack the programmability necessary to make complex physics
decisions or to adjust to a variety of conditions. Often these low level triggers
are only understood by a very small group of experts, making the event selection
criteria inaccessible to most of the physicists in a collaboration. Nevertheless, the
need for making increasingly complex decisions on more and more events has
forced the use of such specialized and inflexible processors.

A major challenge will be to develop flexible systems that can be used at

earlier trigger stages without sacrificing speed. In particular, middle level triggers
function in a data rate environment too high for existing high level triggers.
Many smaller experiments do not yet incorporate high level triggers and stop at
the middle (or even the low) level. However, the clear tendency is for more
experiments to use high level triggers at the earliest possible place in the chain.
The reason for this is not only the ease of preparing a trigger in Fortran. More
importantly, it is the confidence in the validity and appropriateness of the
algorithm that results from the far more extensive testing possible with high
level systems. This allows more complex algorithms and deeper trigger reductions
which are 9” requirement becoming more severe with time. Trigger reductions of
10 to 10 are anticipated for experiments on the proposed Superconducting
Super Collider (SSC)l13]. It is likely that such requirements virtually eliminate
“middle level” triggers as we have defined them. Processors based on verifiable
high level language code will have to take on these tasks.

Our coverage of lower level on line processors will of necessity be

incomplete. Entire conferences are devoted to this topic, and we refer to their
proceedings for further information(ld-28). W e will almost totally neg!ect the

important use of processors for experimental monitoring, calibration, and data
formatting and compaction. Such functions are an important part of all data
acquisition systems usually performed by special processors, but space limitations
require that we concentrate on the event selecting processors.

2.1 Large Ezperiment Trigger Hierarchies

The trigger hierarchy is best understood by looking at two large colliding beam
experiments. ALEPHCPS], a detector now under construction will take data at
the Large Electron Positron Collider (LEP) at CERN beginning in 1989. The
detector consists of an Inner Track Chamber (ITC), a Time Projection Chamber
(TPC), Electromagnetic and Hadronic Calorimeters, and Muon Chambers, with a
total of about 500,000 digitizations per event. The beam crossing rate at LEP is
40.5 KHz, allowing 25 psec for trigger decisions before any dead-time is incurred.
The maximum event recording rate is 2 Hz. The triggering system is designed to
identify all e+e- interactions while reducing background to an acceptable level,
all ,with a minimum of dead time. Other trigger system constraints come from
the detector. The TPC cannot be gated faster than 500 Hz, and the
electromagnetic calorimeter requires 17 /&x. to dump its charge and be ready for

the next crossing. A three-stage trigger scheme has been adopted. The low level
trigger using ITC and calorimetry data will reduce the rate to below 500 Hz in
about 3 psec, and will gate the TPC. The middle level trigger will use TPC
trigger information to reduce the rate below 10 Hz in 50 psec. The final high
level trigger will be applied only after the entire event has been read out. It will
use actual high level language reconstruction programs to bring the rate down
below 2 Hz. (ALEPH also uses many special processors besides the trigger
devices. These include read out controllers for data reduction, calibration and
monitoring, a trigger supervisor, and an event builder.)

UAl(12) is a large genera1 purpose detector that has been successfully
taking data for several years at the CERN pp collider. The bunch spacing is 3.8
,usec, and the interaction rate is expected to reach 150 KHz. The trigger reduces
the rate to 5 Hz recorded on tape. An important constraint is the massive
amount of data from the Central Tracking Chambers (CTC), which require 25
msec for data reduction and read out. Therefore, the first two levels of
triggering cannot use CTC data and must reduce the rate to well below 40 Hz.
Here again, a three stage trigger is used (Figure 2).

The low level trigger uses data on hit muon chamber drift cells and analog
sums of calorimeter channels. It reduces the rate to 100 Hz at which the full
digitized event is stored in a double buffer. The second level trigger uses muon
timing and digitized calorimeter data (with best available calibrations) to make
more detailed physics selections. It requires 3 msec to reduce the rate to 20 Hz
at which the full CTC is read out. A special processor has been designed for the
second level calorimeter trigger. The data consists of 20,000 16 bit pulse height
words and 20,000 addresses, and the required processing includes pedestal
subtraction, calibration in terms of transverse energy, comparison with a
threshold, summation of transverse energy aver regions of the calorimeter, and a
weighted sum of energy over the full calorimeter. The task is split into two
phases. Number crunching hard wired special purpose devices do calculations at
high speed in parallel. Their results are fed to pattern recognition programs in
standard microprocessors which identify detected electrons and jets and trigger on
missing and total transverse energy. Finally, the third stage trigger uses six
3081E emulators programmed in Fortran to make the final physics selection.

2.2 Low and Midlevel Triggers

A good example of a modern low level trigger is the Level 1 trigger for the
Collider Detector at Fermilab (CDF)($U), a large multi-purpose pp detector due
to take data in 1987. Typical of such triggers, it is required to make a decision
in the less than 3.5 psec between beam crossings to avoid dead time, and it
must use data that is delivered separately from the normal data read out path.

The fundamental component of this trigger ccnnes from the electromagnetic and
hadronic calorimeters. (Other parts are derived from muon chambers.) It exploits

10

the projective geometry of the calorimeter by summing calorimeter towers into
15’ azimuthal trigger sectors, 0.2 in rapidity wide. There are a total of 24 x 42
electromagnetic and hadronic trigger sectors. The trigger gets signals from
dedicated outputs on the front end sample and hold cards via dedicated cables.
The signals first go to a “receive-and-weight” card which weights the energy by
sin 8, and then to “cluster sum” cards which calculate the number of towers

with energies over several preset thresholds. The decision is then based on this
number and the total transverse energy. Typical is the use of specialized
dedicated hardware and the limited flexibility of this low level trigger. The
calculations of calorimeter energy are refined in the CDF middle level trigger,
which is more flexible and allows more sophisticated filtering.

Middle level triggers have more time available for complex trigger decisions,
permitting systems with some programmability. These triggers still generally do
not have the full event data available, since they tend to precede full event read
out and process information from a separate path. Since events are usually not
buffered while the middle level triggers are working, tight constraints on elapse-!
time can discourage use of the parallelism seen in high level triggers. They share
some aspects of both low and high level processors and include hard wired,
microprogrammable, and data driven systems. We describe examples of each type.

An elegant example of a hard wired middle level trigger is the Mark II
track finder used at SPEAR and PEP(31). This processor is designed to find
curved tracks in a cylindrical geometry detector with an axial magnetic field. A
low level pretrigger reduces the event rate to about 1 KHz. The middle level
processor must then find tracks in about 30 psec. Hits in the drift chamber feed
a series of shift registers with variable delays, allowing a track with arbitrary
curvature to be shifted into a straight line (Figure 3). Multiple curvature
modules, each with different shift register delays, can look for tracks of different
curvatures simultaneously. The shift register outputs then generate the address of
a 2 bit RAM that determines whether or not that hit pattern corresponds to a
good track. The data bits are artificially widened to generate a road. Required
parameters, such as delays and widths, and RAMs are all programmable.

This device is an example of the commonly used technique of comparing the
data from a particular event with a series of prestored patterns. The comparisons
are made very rapidly since all calculations have been done in advance. In this
case, the pattern of drift chamber hits is compared with prestored patterns for
desirable tracks. Typical of middle level triggers, this one provides a limited
degree of flexibility (what momenturn tracks are accepted, how many missing
hits, how wide the roads, etc.) without sacrificing speed.

Greater flexibility for midlevel triggers is possible with explicitly
programmable devices. Special computers have been designed because conventional
microprocessors are normally too slow. Bit slice technology, for instance, which
requires many integrated circuits for a complete CPU, allows higher instruction
execution speed. Bit slice processors are programmed in microcode, an extremely

11

low level language which uses individual bits of instruction words to set the
state of specific gates or multiplexors in the processor. Using microcode, a special
instruction set may be prepared, tailored to the task at hand. To make the
processor more efficient, designers may, for example, restrict precision to 16 bit

fixed point.
Examples of such devices are the CERN ESOP and XOP processors(32).

The older ESOP processors have been used in several CERN experiments
including the European Hybrid Spectrometer, NAll, and R807, while the newer
generation XOPs are used by UA2 and the LEP L3 experiment. The XOP
processor is optimized for trigger computations of under 4000 instructions on 16
bit integers with execution times up to several msec. XOP uses a very wide (160
bit) microinstruction word, concurrent execution of arithmetic operations, data
address calculations, data accessing, condition checking, loop count checking, and
next instruction evaluation. It supports such specialized instructions as bit search,
population count, and loose compare. All this allows it to do trigger calculations
20 times faster than a 68000 microprocessor (or about 2 VAXes). Another
microcoded processor is the M7, built at Fermilab(

All these processors share the disadvantage of lacking any high level
language in which to program, thereby limiting the complexity of their
algorithms. Similar microcoded special instruction set processors find extensive use
in read out control and calibration applications. Here the lack of a high level
language is less of a problem, since the calibration and read out programs are
usually shorter and more stable than triggers programs. Examples are the MX
used by CDF(Q) and the BADC used at SLAC(35).

Data driven processors represent an approach which attempts to combine the
speed of hard wired with the programmability of special instruction set processor
systems. Examples are the ECL-CAMAC system from Fermilab(36), CERN’s
MBNIM system(37), and the data driven system developed at Columbia
University(38), The latter ambitiously implements a full track reconstruction
program with the processor.

These systems allow a trigger to be programmed, yet make maximum use of
both parallelism and pipelining to insure that many processing steps take place
at once. They also attempt to make each individual processing step as powerful
as possible within a short time interval. They use a set of discrete modules that
carry out processing steps simultaneously, each doing one operation every 25-50
“sec. Important are general purpose table look up modules which can be
reprogrammed (even in Fortran) with the tabulated result of an arbitrarily
complicated calculation. A single 50 nsec step can in this way correspond to a
huge, precomputed, algorithm. Additional modules include stacks to store raw
data and act as buffers between asynchronous loops, and even Fortran-like
hardware DO loop indexers. These have been combined ta implement powerful
track finding algorithms at speeds several orders of magnitude faster than on
large main frame computers(99). The only drawback is the difficulty of

12

“programming” such systems. Rather than working in a high level language, the
user programs by recabling modules and loading precalculated results into the
tables.

High level triggers typically use the full digitized event after it has been
read out and buffered. These systems must make extremely large amounts of
computing available so that many events can be examined in detail in a short
time. The cheap and powerful high level language programmable processors
described in the next section are natural solutions to this requirement, even
being able to use the same programs as for off line analysis. We will describe in
Section 3.3 how these are installed as high level triggers.

3. HIGH LEVEL LANGUAGE EVENT PROCESSORS

By the mid 197Os, cost effective microprogrammable devices were clearly useful
for short trigger algorithms but far too difficult to program for any long trigger
or reconstruction program. When it was recognized, probably first by Kunz(40),
that the, bit slice microprocessor technology used in such processors could be
microprogrammed to execute the instructions of a commercial computer family, a
new era of particle physics computing was started. Several such “emclating
processors” were designed in this period(41) including Kunz’s 168/E at SLAC
which was targeted for an IBM off line environment, the NYU Courant
Institute’s PUMA which emulated a Control Data 6600, and the CERN MICE
processor intended for quick trigger programs and based on the PDP 11
instruction set(42). Some were extremely popular with arrays of emulators
computing a hundred times cheaper than big commercial machines. The 168/E,
in particular, was followed by improved versions which are still being built
today.

In the last year or so the emulators have felt strong competition in cost
effectiveness and ease of use from systems with large numbers of single board
computers based on 32 bit microprocessors supported by Fortran 77 compilers.
Improvements in integrated circuit technology -- and the compilers -- are likely
to make the cost performance advantage so strong that such multi
microprocessors will take over from the traditionally popular emulators.

3.1 Emulators

Emulators have evolved steadily since their introduction. They were at first
limited to important integer operations. The big-machine assembly language this
permitted was a large jump from microprogramming. The emulation concept soon
allowed another leap to Fortran using the excellent compilers prepared by the
computer manufacturers. The 168/E supported most of the instructions required
by IBM Fortran except for floating point. Even on line programs for the MICE
system were typically half in Fortran. The popularity of MICE and the 168/E

13

ultimately led to the development of floating point processors for them so they
would more completely emulate the instructions required by physics.

Both processors took advantage of the fact that neither trigger nor

reconstruction programs require data Input/Output (I/O) during the execution of
the kernels of their programs. It is sufficient to supply event information at the
beginning of processing an event and retrieve results at the end. As a result,
great simplifications can be had by not making direct, formatted Fortran I/O
available directly from the processor. All I/O, including program and calibration
constant downloading, is handled by a controlling computer. This “host” is
connected by an appropriate interface to the processors.

The 168/E was originally designed to do off line reconstruction of the huge
data flow from the SLAC LASS spectrometer(40). The key components were four
of AMD’s 4 bit microprocessor slices, the 2901. The 168/E’s ultimate cycle time
was 150 nsec and its performance was 50-7590 of a 360/168 (or 2-3 VAXes). In
1980 the 168/E \vas reported to cost about $20,000 per processor fully loaded
with 192 Kbytes of memory, including interfacing and assembly (but not testing)
in a six processor system(43).

While the 168/E was used for a variety of on line triggers in addition to
its original off line applications, the MICE processor was always used only for
on line triggering. It’s emulation of the PDPll instruction set was accomplished
with Motorola’s 10800 series ECL bit slice at a micro cycle time of 105 “sec. It
performed at speeds three times the most powerful computer in the PDP family,
the PDPll/TO (or about 1 VAX), when programmed in Fortran or assembly
language, and two to five times faster yet in microcode which was often used in
inner loops. A single processor installation including 4 Kbytes of fast memory
and a CERN Romulus interface cost $13,000 in 1980. The MICE processor was
ultimately used in at least a half dozen CERN experiments including the
neutrino experiment WAl, the ISR experiment R704, and the Omega
spectrometer.

The 168/E addressed the off line problem in an ambitious and ultimately
valuable way. This led to its becoming the most popular emulator with about 50
processors built and installed at SLAC, CERN, DESY, Saclay, in Toronto and
Tokyo and elsewhere. It has been used in “farms” of six or seven parallel
machines. The new opportunity for complex high level triggers led to trigger
applications at CERN and SLAC, and development of interfaces to CAMAC,
Fastbus, and Unibus for activities as diverse as ISR experiments, the UAl Fj,
experiment, and the SLAC hybrid bubble chamber.

All emulators other than the 168/E and its successor the 3081/E have used
fixed microcode for the execution of a defined, emulating, instruction set. They
emulate at the .machine instruction level. The 168/E was unique in employing
software translation to microcode. The translator pass is transparent to users
who see it only as an apparent delay in the IBM compiler-linker activity. The
advantage of this approach is that it eliminates the need for complex hardware

14

to decode the emulating instruction set into microinstructions. For the new
3081/E there is the added benefit that the translator can set up sophisticated,
performance enhancing, pipelines that would otherwise not be possible.

The 168/E’s major weaknesses were identified by its designers and included:
limited memory requiring extensive software and hardware to support overlays;

lack of full 64 bit floating point and byte addressing or manipulation
instructions; and lack of adequate testing mechanismsc4lj. In addition, the
168/E had been designed as a one of a kind installation for LASS. As a typical
product of a high energy physics experiment it used very tight timing and
“clever”, non-modular, design techniques(45]. Th ese problems were recognized by
Kunz and were professionally avoided in the beautifully modular 3081/E.

Also attempting to improve on the 168/E was the 370/E designed at the
Weizmann Institute in Israel. This effort was led by Brafman who had been
involved in the 168/E design while visiting SLAC. Here the emphasis was on
eliminating the software translation to microcode and emulating the IBM
computers at the machine instruction level(46). The 370/E can run untranslated,
unmodified IBM object code, including formated I/O, and the IBM operating
system. This is felt to be a particularly desirable feature at DESYc47) and by
others for whom the task of dividing a program into a host and processor part
is perceived as too onerous. For highly parallel systems, where the I/O
bandwidth can be saturated, the option of doing I/O directly from node
processors gives naive users enough rope on which to hang themselves.
Nevertheless, for low numbers of processors, as is the case with the 370/E, it is
a decided convenience to be able to throw any old program directly into the
emulator and have it run.

As may be seen in Figure 4a, the 370/E uses an architecture of multiple
busses to which are connected~ several function units, integer, floating point,
multiplication, control, and interfacing. Separating functions in this manner
increases the chip count somewhat but greatly reduces design, testing, and
debugging time because the potentially complex control logic is much simplified.
Although a bit slice 2901B is still used in the integer CPU, more functionality is
now obtained with FAST and LS series TTL circuits than was the case with the
earlier emulators. A multilevel pipeline prefetches instructions and allows
microcoding machine language instructions preparatory to execution. The 150 nsec
microcycle is narrowed to 100 nsec during multicycle shift, multiply and divide
operations. This emulator attains 60% of the speed of an IBM 370/168 (or 2.5
VAXes) and supports the full IBM address space. A system with two MBytes of
memory was reported as costing 45,000 DM (about $18,000) in 1985. A 20%
faster prototype was completed at that time in Israel. At least 20 370/Es have
been interfaced to a variety of DEC and IBM host computers at over ten
locations in Israel, England, Germany, the US, and at CERN for the LEP
experiments OPAL and DELPHI. Typical installations involve one or two units,
but at Cornell there is a farm of six.

15

CERN people had seen the 168/E prototype running test programs at SLAC
and started work at CERN in spring 1978 on a copy. By the end of 1980 two
systems were operational and being tested, off line by the European Muon
Collaboration and as an on line filter by the ISR Split Field Magnet group. In
1981 this careful CERN evaluation led to a collaboration with the original
designers at SLAC to make a new version, subsequently named the 3081/E after
the first of a new series of high performance IBM mainframes. The design work
was divided equally between the two institutions.

Like the 370/E, this processor(45) IS modular with separated functional units

on several busses (Figure 4b) and supports a more complete set of IBM
instructions, including full double precision, and much larger memory, up to 14
Mbyte with 64K static RAMS, than its predecessor. Unlike their 370/E
competition, the 3081/E designers retained software translation into microcode
which simplifies the design and can also automatically produce pipelined floating
point operations. The 3081/E runs at 1 to 1.5 times the speed of a 370/168 (or
4-6 VAXes), about twice that of the 168/E. Its cost with 4 MBytes is now
about $20,000, half attributable to the expensive fast static memory. The
designers put a very strong emphasis on ease of building, debugging and
maintaining what was expected to be a frequently reproduced processor.
Accordingly, the design was much simpler than the 168/E and conservative
design rules were followed such as those requiring worst case timing and multiple
commercial sources for components.

A Common Interface board was designed to provide a means of
communication with all the 3081/E busses and, for debugging purposes, control
of its clock and state. Execution may be halted by the interface on various
condition traps. This interface has been connected in various installations to an
impressive list of different busses including IBM c.hannels, CAMAC, VME, and
FASTBUS, using NORD, IBM (mainframes and PCs), Apollo, Motorola 68000,
and VAX computers as hosts. Major 3081/E facilities started production at
CERN in fall 1986 and a year earlier at SLAC. There are also 3081/Es at
Saclay, Harvard, and in Italy.

3.2 Multi Microprocessors

The newly introduced 16 bit ,Motorola 68000 microprocessor was quickly adopted
for particle physics applications in 1980. Though the speed of these devices
continwd to be a limiting factor, their extremely low cost encouraged their use
in parallel systems. The Fast Amsterdam Multi Processor (FAMP) developed by
Hertzberger and colleagues at NIKHEF was the most important early multi
microprocessorj48). It is still in use for high level triggering, having been a part
of the triggers at the CERN ACCMOR spectrometer and UAl experiments and
the DESY JADE e+e‘ spectrometer. Typically, three to seven processors in two

16

levels, one processor acting as a supervisor, the rest as slaves, were operated in
parallel on data from different detector regions of a single event. Each was a
true Single Board Computer (SBC) with CPU and up to 16 Kbytes of memory

(with additional 128K extension boards available). Initially, programs were
developed in assembly language which is really only suitable for short algorithms.
This was remedied with a UNIXtm operating system for FAMP under which

high level languages like Fortran and C are available.
The big UAl colliding beam detector used 60 68000 SBCs for data read out

in addition to the seven FAMP CPUs used for triggering. These were designed
to be compatible with the 32 bit VME bus standard which was new in 1982
and immediately recognized as appropriate for the UAl system by Cittolin and
colleagues(49). Meanwhile at Bonn a CAMAC Auxiliary Crate Controller based
on the 68000 was developed to manage data acquisition(50). As part of this
effort van der Schmitt wrote a Fortran compiler (RTF/68K) designed specifically
for real time applications.

For some time, such multi microprocessors had only limited applications,
mainly in middle level triggers and read out controllers, since the lack of power
of the 1G bit CPUs and the incompleteness of the then available Fortran
compilers limited the complexity of the algorithms that could be run. However,
with the advent of the new generation 32 bit microprocessors and the
development of full-fledged Fortran 77 compilers for these micros, the multi
microprocessors became competitive with emulators for use as off line and on line
processor farms. In fact, the multiprocessors have already passed the emulators in
cost effectiveness, and show potential for significant further improvements in cost
effectiveness in the near future, as described below.

These developments became the basis for a major new multi microprocessor
effort aimed at off line and highest level on line computing by ,a new group at
Fermilab. Named the Advanced Computer Program (ACP), it was formed in
1982 to confront the key particle physics computing problems, which by that
time had been generally recognized as critical. The ACP’s initial focus was
primarily on event oriented multiprocessing. Like most emulator activity
individual events were to be handled completely by separate CPUs(51).

There are many commercial producers of SBCs. Although competition has
not yet driven these products to the status of a commodity, as has happened for
memory chips, the ACP Multiprocessor was developed with an open, eclectic
philosophy to take advantage of the strong competition ,in..this.area. The high
speed, 32 bit ACP Branchbus connects up to 16 crates of SBCs per branch to
each other and the host computer. As the fundamental skeleton, the Branchbus
and its optional 8x8 crossbar switch are the only features specified to remain the
same in future variants of the ACP system. It is intended that, at any point in
time, a system should use the most cost effective node CPUs available from high
energy physics lab designers or, preferably, from commercial sources. Present
ACP systems use VME standard crates interfaced to a Branchbus through a

17

Branchbus to VME Interface (BVI), as shown in Figure 5. If motivated by SBC

product availability in some other, “xBUS”, standard, a “Bxl” interface module
can readily be designed. Because of this competitive, eclectic philosophy, the
ACP system software is designed to be primarily resident in the host computer,
with only a small node operating system which can be ported with relatively
little effort to a new CPU.

The ACP has developed a new CPU based on the 68020, Motorola’s 32 bit
successor to the 68000, and another on AT&T’s 32100, to demonstrate the
technical and pricing requirements of nodes for such multiprocessors. Commercial
SBC designs are still primarily aimed at controls applications, where they are
used in small numbers, and are not yet acceptably cost effective. The ACP
boards include two MBytes of memory and the Motorola 68881 or AT&T 32106
floating point coprocessor (FPU) appropriate to the CPU in use. Except for the
CPU/FPU used, the boards are essentially identical. They are standard, double
Eurocard, VME designs with all normally supported VME single word transfer
protocols. Unlike any other SBC available, they also support VME block
transfers directly into memory. This permits extremely high rates of data transfer
for OR line triggers. The system has been tested to transfer data error free at 20
MBytes/set from a FASTBUS module through the Branchbus into CPU memory
for over 48 hours.

These first ACP CPU modules presently cost under $1500 to produce and
run Fortran reconstruction programs at about 0.7 VAXes. Including the low
crate and interfacing overhead in large systems their cost effectiveness is therefore
now about $2000/VAX. Memory extensions up to six MBytes (at under
$200/MByte) can be located in slots in a single Eurocard crate immediately
below the CPUs. The ACP plans at least one new generation of CPUs and is
presently investigating at least eight microprocessor candidates, a much wider
choice than was available when the first CPUs were designed. Several of these
are Reduced Instruction Set Computers (RISC) and they will depend on good
Fortran compilers for realization of their extraordinary performance potential.
One, the Fairchild Clipper, has passed the standard ACP reconstruction
benchmark at a speed of 3 VAX es in Fortran. Since the cost of the new CPU
will ultimately be similar to the present ones, this benchmark demonstrates the
possibility of attaining a cost effectiveness of better than $SOO/VAX in 1988.

Figure 5 shows in block form the first full scale ACP Multiprocessor
installed in the Fermilab Computer Center. It .is a 140 node system, half based
on 68020 and half on 32100 CPUs. Each VME crate contains up to 18 CPUs, a
BVI, and a VME Resource Module (VRM) which handles arbitration. The BVIs
act as master on VME and slaves on the Branchbus. The Branchbus Controller
(BBC) is the Branchbus master and a slave on some other system, here the
Qbus of a MicroVAX host computer. A VBBC is under design to allow direct
VME control, and multiple mastership, of the Branchbus. The system may be
hosted by one, two or three MicroVAXes which share a common memory on a

18

special VME root crate to which they are interfaced through a Qbus to VME
interface (QVI).

An application program destined to run on this system must, as for the
3081/E emuiator, be divided into two parts. One, running in the host, handles
all I/O. The other, running in each node, does the actual number crunching. The
ACP provides system subroutines to communicate between the host and node
programs. Routines exist to broadcast calibration constants at the beginning and
to sum statistics at the end of a run. Individual events are sent, and results
retrieved, asynchronously, by user called send and get subroutines. Automatic
floating point and integer conversions, the latter in hardware, are available when
required by different host and node CPU standards. The CERN ZEBRA data
bank package is supported essentially transparently to the user. Converting
programs to meet the multiprocessor requirements is relatively easy, aided by a
full, multiprocess simulator which runs on a VAX. A visitor inexperienced with
the system was able to bring up the Lund Monte Carlo program on real nodes
in two days.

The initial system started running under Fermilab Computer Center operator
control in July, 1986, and ran for six months, with no downtime, on a huge
backlog of data from the Tagged Photon Spectrometer experiment E691. With
100 processors (the remainder were assigned to other uses), the system performed
at more than double the capacity of Fermilab’s CDC 175 and 875 computers
originally costing some $20 million. Omnibyte Corporation of West Chicago,
Illinois, is selling all components of the ACP system at prices including initial
testing and two year warranty. By the end of 1986, this company had orders for
over 135 processors from at least ten institutions (including SIN, Los Alamos,
Brookhaven, Rutgers, Yale, and the Universities of Toronto and Montreal) and
had shipped over 100. This did not include an order for an 80 CPU second full
system for the Fermilab Computer Center that was in process.

If there has been a weakness in the multi microprocessor approach, it has
traditionally been compilers where there still remains an opportunity for a factor
of two optimization. Effort in this direction is not encouraged by the commercial
market place which has been more interested in compatibility with PCs than
performance. It is easier to produce an efficient compiler if the goals are limited
as they have been in van der Schmitt’s real time compiler. However, for 1a;ge
programs a full Fortran 77 implementation, at minimum, is required. Some, such
as the Absoft 68020 compiler, now are reasonably bug free and have proven very
satisfactory for writing new codes and for truly portable Fortran 77 programs.
Converting from programs prepared under other compiler standards can be more
time consuming. This is a problem not unique to microprocessors. It is
commonly encountered in large experiment collaborations unless there is an
agreement to outlaw exclusive VAX and IBM Fortran dialect features available
on some home institution computers.

19

The ability to use full IBM Fortran is seen as a strongly desirable feature

by many emulator users. Similarly many from the VAX environment have a
strong preference for using MicroVAXes in a multi microprocessor system even at
a significant cost premium because it allows them to take advantage of VAX
software. This was stated as a significant motivation by the DO collaboration in

their selection of a multi MicroVAX system developed by Cutts and Zeller at
Brown University(52) for the highest level trigger on their Fermilab pp
experiment. (After making their MicroVAX chipset available for prototyping,
DEC decided not to release it for external designs, such as open architecture
multiprocessors.) A 49 MicroVAX “farm” is planned with each node equipped
with a special 256K dual port memory capable of absorbing data from an eight
data cable parallel read out at the instantaneous 100 MBytes/set data rates
required by the experiment. Another MicroVax acts as the supervisor. Data is to
be read out from the nodes, after event selection, via an Ethernet link to a host
DEC 8600 at rates under a few hundred KBytes/sec. Higher rates will require
using the dual port memory in write mode.

A 16 CPU farm has been used off line at Brown generating GEANT Monte
Carlo events badly needed by the experiment for final design decisions. The DEC
ELN software toolkit is convenient for debugging and for handling data at the
low rates required by a time consuming large experiment Monte Carlo. Each
MicroVAX, including five MBytes of DEC memory and interfacing, costs about
$16,000(53). Thanks to the highly optimized VMS compiler, the MicroVAX chip,
which is intrinsically not as fast as either the Motorola or AT&T circuits, runs
slightly faster in Fortran, about SO-SO% VAX. Therefore, the present cost
effectiveness of this system is about SlS,OOO/VAX. This is expected to improve
by about 20% with the availability of new DEC board level products.
Nevertheless, this is a considerable premium over other. options, but advocates
argue that the costs of “non-VAX operation” should not be forgotten(54). DEC
has provided much support, including generous pricing, to this project, and one
would expect it will be able to take advantage of successor MicroVAX chips
rumored to be in production by 1988.

In another effort involving MicroVAXes, Siskind of NYCB Real Time
Systems has used a Department of Energy Small Business Innovation Research
grant to develop a FASTBUS MicroVAX which incorporates the DEC board
level product as a piggyback in a multiboard, superfast (60 Mbyte/set)
FASTBUS interface(5.5). The SLAC SLD detector is planning on using 15 of
these in a slower (12 Mbyte/xc) and cheaper TTL version for a high level
trigger(56).

Each of the approaches to high level language processors has a strong
advocacy. Emulators still provide higher performance individual processors, which
can be essential in certain real time applications. For those who have the luxury
of living within the warm and fuzzy environment of one computer manufacturer,
emulators, along with single vendor multiprocessors, allow bit for bit comparison

20

with popular main frames. On the other hand, open multi microprocessor systems
are more flexible, have a lower buy in cost, and have hardware that is easier to
make work by nonexperts. They are more readily commercialized in an open
competitive market. These systems already deliver at least as much performance
per dollar as emulators, with much more cost effective CPUs expected soon.
The reader may sense in this summary the flavor of debate that typifies this
field. What is important is that this intense interest and activity has led to
devices which show promise of being able to handle the computing load of
experiments for the foreseeable future.

3.3 On Line Applications: The Interface Problem

Emulators and multiple microprocessor systems have both found application as
high level triggers. Each individual processor can run large complex codes written
in Fortran. The highly cost effective arrays of such processors pioneered in off
line applications can be applied to obtain the massive amounts of processing
power needed for on line systems. Problems in applying them on line arise
primarily from a lack of standardization by experiments.

CDF is using an array of ACP processors for their level 3 triggec(57). The
system is required to accept events at 100 Hz and provide at least 50 VAX
equivalents of processing power. The processor farm is fully integrated into the
Fastbus data acquisition system, through a Fastbus to Branch Bus Converter
(FBBC). The FBBC will be used both for inputting events to the processors
(from the Fastbus Event Builders) and outputting from the ACP farm (by a
VAX with a Fastbus interface). The system is managed by the Buffer hJ?anager,
which controls the data acquisition system, via Fastbus messages to the
MicroVAX acting as host for the processor farm. On the other hand, the MEGA
experiment at Los Alamos, also using an FBBC to attach ACP processors to a
Fastbus system, controls the flow of events to the processors by polling them
directly from Fastbus to determine which are ready to accept events(58).

UAl has used up to 6 168Es(59) and recently 3081E emulators(60). The
168Es were originally interfaced to the CAhlAC based data acquisition system
through the CAMFast interface, but to obtain higher performance a new PAX-
Greyhound system was developed. The FAX module was a CAMAC sequencer
that optimized CAMAC read out and interfaced to the Greyhound bus, a new
bus used to interconnect the 168Es. A newmemory boar.d for the 168Es was
also developed by the experiment. The 30ElEs which have recently replaced the
168Es are interfaced to a new VME system. A VME event builder reads the
events from dual port memories and broadcasts them (a non-standard VME
feature) to event task units, one of which is the farm of 3081Es. The Mark II
at SLAC, on the other hand, attaches 3081Es directly to Fastbus(61). As noted
earlier, other experiments such as the DO multiple MicroVAX system and the
experiments using 370Es also have invented their own interfacing schemes.

21

These examples demonstrate the regretable lack of standardization in the
way these processors are interfaced. Experiments frequently find it necessary to
develop new modules. It is hard to say whether this derives from the relative
newness of these devices or from system designer’s wishes to be different. One
hopes that the future will bring greater uniformity in the way such on line
multiprocessors -- and data acquisition systems in general -- are implemented.

3.4 Lattice Gauge Engines

When confronted with the huge and important computing demands of lattice
gauge calculations, theorists, encouraged by their experimentalist colleagues, began
building their own parallel computers(62). All the main theory processors are
programmed in high level languages, usually Fortran, and many are multi
microprocessors. Most supplement the Fortran engine with special devices that
use high speed VLSI floating point multiplier and adder chips to compute the
intensive kernels of their programs.

Until recently, only communication between processing nodes working on
adjacent parts of the lattice was recognized as being required. This naturally led
to grid like architectural arrangements. At Cal Tech, Fox, a physicist, and Seitz,
a computer scientist joined forces to develop a hypercube of microprocessors(63).
The hypercube is a good topology because it embeds the simple one to four
dimensional grids typically used by scientific calculations and, in the worst case,
communication path distances increase only as log n. The original system, called
the Cosmic Cube, was based on 64 Intel 8086/87 16 bit processors and was
completed in 1983. It did not emphasize performance but was used for a
complete study of the applicability of local memory grid architectures to a wide
variety of problems(1I). This influential study alerted industry to the broad
utility of such systems. It spawned commercial hypercube products from Intel,
Ametek, N-Cube, and Floating Point Systems as well a hypercube development
effort at The University at Southampton using Inmos Transputer chips, which
have excellent communication hooks for such purposes(64). An improved design
using 68020s and, ultimately, daughter boards with Weitek floating point chips is
being developed by Fox in collaboration with the Jet Propulsion Lab. .% 128
node system is planned, and was about half complete at the end of 1986(65).

At the same time as the Cosmic Cube was developed, Christ and Terrano
at Columbia constructed a 4x4 taroidal grid of nodes of Intel 80286/87
microprocessors coupled to a microprogrammed floating point vector processor
based on the then state of the art TRW VLSI multiplier and adder chips(66).
In this processor (Figure 6a) nodes operate in lock step. After identical
processing cycles, each transfers data synchronously to its nearest neighbor in a
given direction. This is truly SIMD operation appropriate to the homogeneous
problems then of interest to the designers. This processor was the first one using
the maximally cost effective floating point chips that had just become available.

22

It is able to reach 16 Mflops per node at a cost under $2500, still a very
competitive figure, and has been used for important lattice calculations(67). A 64
node grid incorporating Weitek chips was 75% complete at the end of 1986, and
a 256 node machine with 16 Gigaflop performance is planned.

An Italian group led by Cabibbo is developing another synchronous SIMD-
like machine (called APE) of a very different architecture (Figure 6b) but also
using Weitek chips to compute the lattice gauge kernels(68). Here a 3081/E is
used to issue the simultaneous, SIMD, instructions to a bank of floating point
units (FPUs) each containing four multipliers and two adders so that the
operation y = axb+c on complex numbers is optimized. Each FPU has a
maximum performance of 64 Mflops, so the planned 16 unit system could surpass
a Gigaflop. Large memory is also important to big lattice calculations, and the
design cleverly matches a Gigabyte of dynamic memory through a switch to the
high speed FPUs. The switch can connect FPUs only to “neighboring” memory
banks, but future design changes may relax this constraint. By the end of 1986
four FPUs were in place and the remainder were anticipated to be complete in
1987. (A similar project is the Space Time Array Computer (STAC) under
development at Boston University(68aJ.)

At present the largest lattice gauge processor project, both in terms of
Gigaflops and of dollars, is being undertaken at IBM Watson Labs by
Weingarten et al(69). Targeted at eleven Gig&lops, the GFll (Figure 6c) is also
an SIMD machine with one high speed central controller issuing instructions, here
to 576 floating point processors again based on Weitek multiply and ALU chips.
These 20 Mflop FPUs are flexibly interconnected bhrough a three stage Benes
(shuffle) network of 24 x 24 crossbars. Used typically as a 512 node grid for an
8’ lattice, the extra 64 processors are to overcome the fundamental weakness of
all grid processors. Unlike tree ,structures they are extremely fault intolerant,
failing if a single node goes down -- unless there are spares and a reconfigurable
switch as in the GFll.

The ACP in a collaboration with Fermilab theorists is developing a lattice
gauge processor with the architecture shown in Figure 6d based on ACP system
modules. This structure is influenced by the more efficient non local algorithms
(the Langevin method) that have recently been proposed for lattice gauge
calculations(10). It is just as easy for a processor to communicate to a far away
node as to .a nearest neighbor in this system. Truly MIMD it also allows
asynchronous algorithms which .may. someday..be~.proposed... The..nodes will include
microprogrammed “array processor” boards giving the 5 Mflop/$lOOO level of
cost effectiveness typical of systems based on Weitek chips, but here in a less
constraining, fault tolerant architecture. The microcode will be prepared by
experts and will look like subroutines to the theorist’s Fortran program.

The lattice gauge processor story will not end here. Hopefully, a
combination of dramatic new algorithm and hardware developments will make
possible real QCD calculations before long. Given a realistic possibiliry of looking

23

for fundamental QCD discrepancies or testing prediction8 of higher unified
theories, funding for lattice gauge processors could reach a level that today
would be surprising for a theorists’ endeavor.

4. UNSOLVED PROBLEMS: THE FUTURE

Technology projections are routinely overturned by unexpected inventions, but
one must agree that at least the requirements of high energy physics appear
certain and continuing. To date new computer initiative8 in physics have
primarily applied industry supplied components in suitably cost effective ways.
Hardware development will continue, and there is every expectation that it will
meet the data rate and trigger reduction needs of experiments on 20 TeV

colliding beam machines. What is new is that demand for software innovation,
not likely to be adequately met elsewhere, will put particle physics into forefront
research in numerical algorithms and artificial intelligence.

At Fermilab the ACP is working on attaching devices based on video
technology, like the cheap, mass produced Write Once Read Many times
(WORM) optical disks and 8 mm cartridge tapes, directly to nodes within the
ACP multiprocessor. This would allow systems originally conceived for
reconstruction processing to reduce the analysis turn around for a large
experiment from weeks to a half hour. The impact this could have on particle
physic8 is clearly enormous. However, such a dramatic hardware improvement
will have to be accompanied by a similarly dramatic change in the way
physic&s interact with analysis programs. It would hardly be worth developing
hardware that cuts the analysis iteration time to this level if, as now, it
continue8 to take many days for an experimenter. ~to prepare ,the next try.

Analysis programs go through much modification, frequently by many hands,
as new ideas, technique8 and variables, are tried. They are intrinsically big,
messy, unstructured Fortran programs with scattered subroutine calls to
histogram and plotting packages with long and obscure call lists. Making changes
is, not surprisingly, a time consuming mechanical endeavor. Tests, to make sure
everything is right before committing to a full pass through the data, cau8e
further delay. Something has to be done about this situation, and we think that
the vay is being shown by theorists and businessmen.

The obscurity of Fortran program8 for doing science has been recognized in
the theoretical context by Wilson et 81170). Their “Gibbs Project” at Cornell is
attempting to address the problem by developing syntax for a language at a
level higher than Fortran which is more transparent to scientists. Programs will

be organized like a text book with chapters defining, in standard mathematical
notation, the basic equations, boundary conditions, algorithms (e.g. Simpson’s
rule), starting values, etc. of a problem. The project is presently using “human
compilers” to establish a syntax sufficiently complete for an automatic compiler.

24

High quality workstations for their research and, later, the science are considered
a prerequisite by the Gibbs group.

Even before this effort by theorists, the business community had discovered
the benefits of easy to use software for everyday workplace tasks. Spreadsheets
and efficient human interfaces, like ~that on the Apple Macintosh computers, are
now a common part of every off& environment. The human interface concepts
based on “mouse” cursor control and desktop iconography were developed in AI
research at the Xerox PARC Lab in Palo Alto in the early 19708. We expect
successful personal computer software techniques, as well a8 Gibbs concepts will
be combined with a new generation of cheap personal science work stations to
produce a spreadsheet friendly front end for experiment analysis. (Early work in
this direction at SLAC and CERN was reported at the recent Asilomar
Conference on Computing in High Energy Physics/7f).) Software that allows an
experimenter to request histograms with a few clicks of a mouse and to define
the kinematic variables in standard math notation will be an appropriate match
to hardware engines that can process a large experiment data base in 30
minutes.

A subtle irony underlies the impressive worldwide work on experiment
trigger hardware described in Sections 2 and 3.3. The high level language
programmable processors are somehow less trusted, and less utilized, for large
trigger reductions than middle and low level devices which are much harder to
program. The issue has to do with trust in the correctness of the programs.
Because of the difficulty in preparing them, programs for the lower level triggers
are simpler and, thereby, more readily tested. High level systems are clearly
capable of complex on line programs and selection criteria as severe as off line
analysis that ultimately leads to publication of results. However, an event
discarded on line is lost forever,~and experiments are naturally very careful to
test trigger programs thoroughly. Anyone who has wrestled with a large analysis
or reconstruction program appreciates how long it takes before anything
approaching certification of correctness can be made.

Interaction rates at 20 TeV hadron colliders are expected to be 108 per
second according to SSC design studiescI3). Trigger reductions of 108 will be
required to get down to data logging rates of 1 Hz. Unbiased triggers that can
accomplish this will be so complex that they will only be feasible in high level
languages even in environments we now see as middle and low level triggers.
Developing high level processors that can handle the rates required will be
accomplished by suitably parallel, probably tree structured architectures for data
acquisition. In fact, there are high level processors existing today with the ability
to handle data rates approaching 200 Mbytes/%x. The real problem will not be
rates, but the trigger program confidence issue which is already making itself
felt.

Modern software engineering techniques, such as “structured analysis,
structured design” (SASD), are beginning to be applied in large experiments(72j.

25

This work is a precursor to what will be essential: establishing techniques for
developing and testing certified trigger code. Moreover, it will have to be
possible to do this in almost real time, as the need of experiments for triggers
that can be changed during a run is not likely to disappear. Rigorous
certification of large and critical software projects is hardly a problem limited to
high energy physics. In fact, this issue is at the heart of some important
political debates about, for example, the,~ Strategic Defense Initiative and nuclear
reactor control systems. One can expect, therefore, that particle physics will not
have to confront this problem alone. Nonetheless, the issue involves basic and
unsolved difficulties of artificial intelligence research. For example, the desire will
be to test not only whether the program is in fact carrying out the intentions of
the designers, but whether those intentions are correct in the context of the
detector parameters, known physics, and a miscellany of other variables.

It is a common trait of scientists to dismiss as “trivial” problems for which
the solution path is understood. Development of new hardware for the computing
intensive problems of experimental and theoretical particle physics will follow
paths well established today, though the effort can hardly be called trivial. We
are not as sure about directions for attacking the lattice gauge algorithm, human
interfacing, and software verification issues. These are also real and serious
impediments to progress in particle physics. Finding approaches which have
promise of resolving them is therefore a pressing, and truly nontrivial, concern.

26

Acknowledgments

We would like to thank our colleagues on the Advanced Computer Program for
their stimulating support. M. Fischler and C. Quigg were helpful on areas with
which we were not familiar. We thank the many individuals and groups working
in this field for responding to ours request for information. We apologize that
space did not permit us to describe most of the work in any detail. Our choice
of efforts to describe was based more on consideration of which would make the
clearest examples than on any quality judgement. We thank L. Rauch for
preparing the bibliography and manuscript. The authors are supported by funds
from the U.S. Department of Energy.

27

Literature Cited

Rossi, B., Nature 125:636 (1930)

Wilson, K. G., Phys. Rev. D-3 10(8):2445-459 (1974)

Blackett, P. M. S., Occhialini, G. P. S., Proc. Roy. Sot. A139:6Y9-726
(1933)

Fukui, S., Miyamoto, S., Nuovo Cimento 11(10):113-15 (1959)

Collider Detector at Fermilab (CDF) Activity Report, Batavia:Fermilab,
December 1986

Ballam, J., Chairman, Report of Ad Hoc Committee on Future Computing
Needs for Fermilab, FERMILAB-TM-1230 99 pp. December, 1983

L3 Collaboration, Technical Proposal ,‘/ or LEP Ezperiment, submitted to
CERN] May, (1983)

Newman, H., See Ref. 18. In Press.

Throughout this article, we use the VAX 11/7&?0 performance as a
standard unit (VAXes). Relative performance of other machines are taken
from Computing for Particle Physics, Report of the HEPAP Subpanel on
Computer Needs for the Nezt Decade, August 1985, DOE/ER-0234 p. 74
(1985)

1.

2.

3.

4.

5.

6.

7.

7a.

8.

9.

10.

11.

12.

13.

14.

15.

Hasenfratz, A., Hasenfratz, P., Ann. Rev. Nucl. Part. Sci., 35:559-604
(1985)

Batrouni, G. G., Katz, G. R., Kronfeld, A. S., Lepage, G. P., Svetitsky,
B., et al., Phys. Rev. D 32(10):2736-746 (1985)

Fox, G. C., Otto, S. W., Physics Today, 37(5):50-59 (1984); Fox., G., The
Performance of the Caltech Hypercube in Scientific Calculations. In
Supercomputers--Algorithms, Architectures and Scientific Computation, ed.
F. A. Masten, T. Tajima, Texas:University of Texas, (1985)

Dorenbosch, J., See Ref. 13, pp. 134-151 (1985)

Cox, B., Fenner, R., Hale, P., ed. Proc. of the Workshop on Triggering,
Data Acquisition and Off, Line Computing for High Energy/High Luminosity
Hadron-Hadron Colliders. 473 pp. (19&j)

Michelini, .%., Dobinson, R. W., Hoekemeijer, A., Innocenti, P. G., Jones,
T., et al., ed. Proc. Topical Conference on the Application of
Microprocessors to High Energy Physics Ezp., CERN 81-07 614 pp.
GenevxCERN (1981)

Istituto Nazionale di Fisica Nucleare Sezione di Padova, ed. Proc. of Three
Day In-Depth Review on the Impact of Specialized Processors in
Elementary Particle Physics, Padoua, 1983, 373 pp. (1983)

28

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Donaldson, R., Kreisler, M. N., ed. Proc. Symposium on Recent
Developments in Computing, Processor and Sojtware Research jar High-
Energy Physics, Guanojuato, M&co, 1981, 459 pp. (1984)

Hertzberger, L. O., ed. Proc. of the Conference held in Amsterdam, The
Netherlands, 1985, on Computing in High Energy Physics, 431 pp.
Amsterdam:North-Holland (1986)

Ash, W. W., ed. Proc. of Conference on Computing in High Energy
Physics held in Asilomar State Beach, Caiijornia, Amsterdam:North-
Holland. In Press.

IEEE Conferences on Real-Time Computer, Applications in Nuclear and
Particle Physics, held in Santa Fe, NS-26(4):4365-678 (1979)

IEEE Conjerences on Real-Time Computer, Applications in Nuclear and
Particle Physics, held in Oak Ridge, NS-28(5):3667-928 (1981)

IEEE Conferences on Real-Time Computer, Applications in Nuclear and
Particle Physics, held in Berkeley, 1983, NS-30(5):3721-4024 (1983)

IEEE Conferences on Real-Time Computer, Applications in Nuclear and
Particfe Physics, held in Chicago, 198.5, NS-32(4):1260-1495 (1985)

Verkerk, C., ed. Proceedings on the 1984 CERN School of Computing,
Aiguablava, Catalonia, Spain, CERN 85-09, 376 pp. GenevxCERN (1985)

Verkerk, C., ed. Proceeding on the 1982 CERN School of Computing,
Zinal, V&is, Switzerland, CERN 83-03, 350 pp. Geneva:CERN (1983)

Verkerk, C:, ed. Proceedings on the 1980 CERN School of Computing,
Vraona-Attlki, Greece, CERN 81-03, 408 pp. Geneva:CERN, (1981)

Verkerk, C., ed. Proceedings on the 1978 CERN School of Computing,
Jadwisin, Poland, CERN 78-13, 256 pp. Geneva:CERN, (1978)

Macleod, G. R., Chairman, Proceedings on the 1976 CERN School of
Computing, La Grande Motte, France, CERN 76-24, 283 pp.
GenewCERN, (1976)

Macleod? G. R., Chairman, Proceedings on the 1974 CERN School of
Computzng, Godoysund, Norway, CERN 74-23, 438 pp. Geneva:CERN
(1974)

Videau, I., IEEE Trans. Nucl. Sci., 32(4):1484-1489 (1985)

Amidei, D., Campbell, M.! Frisch, H., Grossc-Pilcher, C., Hauser, J., et al.
A Two Level Fastbus Based Trigger System jar CDF, CDF Note No. 510,
Internal Document, Submitted to Nucl. In&r. M&h. (1987)

Brafmann, H., Breidenbach, M., Hettel, R., Himel, T., Horelick, D., IEEE
Trans. Nucl. Sci., NS-25(1):692-97 (1978)

29

32.

33.

34.

35.

36.

37.

38.

39.

40.

41. Verkerk, C., See Ref. 25, pp. 282-324 (1981)

42. Halatsis, C., Joosten, J., Letheren, M. F., van Dam, A., Proceeding of 7th
Annual Symposium on Computer Architecture, 1980, La Baule, France;
New York:IEEE publication 80CH1494-4C (1980)

43.

44.

45.

46.

47.

48.

49.

Jacobs, D. A., Computer Physics Communications 26:69-X (1982); BXhler,
P., Bosco, N., Lingjaerde, T., Ljuslin, C., van Praag, A., Werner, P. See
Ref. 17, pp. 283-86 (1986)

Droege, T., Gaines, I., Turner, K. J., IEEE Trans. Nucl. Sci., NS-
25(1):698-703 (1978)

Drake, G., Droege, T. F., Nelson, C. A., :r.,
IEEE Trans. Nucl. Sci., NS-33(1):92-97 (1986)

Turner, K. J., Ohska, T. K.,

Breidenbach, M., Frank, E., Hall, J., Nelson, D., IEEE Trans. Nucl. Sci.,
NS-25(1):706-15 (1978)

Barsotti, E., Appel, J. A., Bracker, S., Haldeman, M., Hance, R., et al.
IEEE Trans. Nucl. Sci., 26(1):686-96 (1979)

Beer, A., Bourgeois, F., Corre, A.,
Inst. Meth. 160:217-25 (1979)

Critin, G., Huber, M. L., et al. Nucl.

Avilez, C., Borten, L., Christian, C.,
Ref. 16, pp. 45-54 (1984)

Church, M., Correa, W., et. al. See

Martin, J., Bracker, S., Hartner, G.,
164-77 (1981)

Appel, J., Nash, T. See Ref. 14, pp.

Kunz, P. F., Nucl. Inst. Meth. 135:435-40 (1976); See also HungerbZihler,
V., Mauron B., Vittet, J. P., Nucl. Inst. Meth. 137:189-92 (1976) for
another project with these ideas at about the same time.

Kunz, P. F., Fall, R. N., Gravina, M. F., Halperin, J. H., Levinson, L. .I.,
et al. IEEE Trans. Nucl. Sci. NS-27(1):582-86 (1980)

Lord, E.: Kunz, P., Botterill, D. R., Edwards, -4., Fucci, A., et al. See
Ref. 14, pp. 341-54 (1981)

Kunz, P. F., Gravina, M., Oxoby, G., Trang, Q., Fucci, A., et al. See
Ref. 15, pp. 83-100 (1983)

Brafman, H., Fall, R., Gal, Y., Yaari, R. See Ref. 15, pp. 71-81 (1983)

Notz, D. A Data Processing System Based on the 370/E Emulator, DESY
85-046, 17 pp. Hamburg:DESY (1985)

Gosman, D., Hertzberger L. O., Holthuizen D. J., Por, G. J. A., Schoorel,
M. See Ref. 14, pp. 70-82; and See Ref. 14, pp. 83-90 (1981)

Cittolin, S., Demoulin, M., Haynes, W. J., Jank, W., Pietarinen, E., Rossi,
P. See Ref. 16, pp. 413-27 (1984)

30

50. Mertens, V., van der Schmitt, H., See Ref. 15, pp. 257-i6 (1983)

51. Bracker, S., Nash, T., Gaines, I., See Ref. 15, pp. 277-301 (1983); Gaines,
I., Areti, II., Atac, R., Biel, J., Cook, A., et al. See Ref 18. In Press;
Biel, J., Areti, H., Atac, R., Cook, A., Fischler, M., et al. See Ref. 18. In
Press.

52.

53.

54.

55.

56.

57.

58.

59. Carroll, J. T., Cittolin, S., Demoulin, M.,
Ref. 1.5, pp. 47-70 (1983)

Fucci, A., Martin, B., et al., See

60. Cittolin, S., See Ref. 17, p. 278 (1986)

61. Rankin, P., Bricaud, B., Gravina, M., Kunz, P. F., Oxoby, G.,
IEEE Trans.

et al.,
Nucl. Sci., &X32(4):1321-325 (1985); Paffrath, L., et. al.,

IEEE Trans. dYw,cl. Sci., NS-33:i93-96 (1986)

62.

63.

64.

[A similar concept was conceived at UCLA and CERN where the VIRTUS
processor was to use a CERN 68000 FASTBUS module, a combination
which is not competitive; in, this..application. See Ellet, J., Jackson, R.,
Ritter, R., Schlein, P., Yaeger, D., Zweizig, J., See Ref. 17, pp. 235-39
(1986); Mfiller, H., See Ref. 17, pp. 240-46 (1986)]

Cutts, D., Hoftun, J. S., Johnson, C. R., Zeller, R. T., Trojak, T., van
Berg, R. See Ref. 17, pp. 287-91 (1986)

Dp Management Plan and Cover Agreement Fermilab, Internal Document,
76 pp. (1985);
(1986)

and see Johnson, T., Durham, T., see Ref. 54, p. 410

Johnson, T., Durham, T., Parallel Processing: The Challenge
Computer Architectures p. 410, England:Ovum Ltd (1986)

of New

Siskind, E. J., See Ref 16, pp. 281-84 (1984)

Sherdan, D. J., IEEE NS-32(4):1479-1483 (1985)

Beretvas, A., Carroll, J. T., Devlin, T., Flaugher, B., Joshi, U., et al.,
Proceedings of 3rd Pisa Meeting on Advanced Detectors, Castiglione della
Pescaia, Italy, 1986; In Press.

Oothoudt, M.? Naivar, F., Smith, W., Use of the Fermilab Advanced
Computer Prqect (ACP) for MEGA On L‘ me High-level Triggering and Off
Line Data Analysis, MEGA internal document, Los Alamos, November 1,
1985; and Oothoudt, M., private communication.

Pearson, R. B., Richardson, J. L., Tows&t, D., Comm. of the ACM
28:385-89 (1985)

S&z, C. L., Comm. of the ACM 28(1):22-33 (1985); Brooks, E., Fox, G.
Johnson, M., Otto, S., Stolotz, P., et al., Phys. Rev. Lett. 52(26):2324-32;
(1984); Otto, S. IV., Stack, J. D., Phys. Rev. Lett. 52(26):2328-331 (1984)

Hey, A. J. G., Jesshope, C. R.,
(1986)

Nicole, D. A., See Ref 17, pp. 363-69

31

65.

66.

67.

68.

68%

69.

70.

71.

72.

Rogstad, D. H., AMPliJier (Jet Propuiaion Laboratory, Pasadena,
California) 1(1):5-6 (1986)

T‘Xran0, A., See Ref. 15, pp. 135-153 (1983); Christ, N. H., Terrano, A.
E., IEEE Trans. Camp. C-33(4):344-50 (1984); Christ, N. H., private
communication

Christ, N. H., Terrano, A. E., Phys. Rev. Lett. 56:111-14 (1986)

Bacilieri, P., Cabasino, S., Marzano, F., Paolucci, P., Petrarca, S., et al.,
See Ref. 17, pp. 330-37 (1986)

Brewer, R. C., G&s, R. C., Maturana, G., See Ref. 17, pp. 339-344
(1986).

Beetem, J., Denneau, M., Weingarten, D., J. Stat. Phys. 43:1171-183
(1986)

The GIBBS Group (includes Bergmark, D., Demers, A., Gries, D., Lepage,
P., Moitra, D., et al.) See Ref. 16, pp. 89-96 (1984)

Burnett, T., See Ref. 18. In Press; Brun, R., Bock, R., Conet, O., Marin,
J. C., et al., See Ref. 18. In Press.

Kellner, G., See Ref. 18, In Press; Palazzi, P., Brazioli, R., Fisher, S. M.,
Zhao, W., et. al., See Ref. 18. In Press.

TA
B

LE

1
R

cp
re

se
ul

at
iv

e
co

m
pu

tin
g

in
te

ns
iv

e
ex

pe
rim

en
ts

Ex
pe

rh
cn

t
Lo

ca
tio

n
E

ve
,,t

s/
C

Y
rC

V

A
X

-s
et

/E
ve

nt

V
A

X
-y

rs
d/

C
Y

rC

E
69

1
Fe

rm
ila

l,
fix

ed

ta
rg

et

1
x

lo
8

7
30

U
A

l(6
)

C
E

R
N

‘p

5

x
10

6
60

ZO

b

C
D

Fa
(6

)
~‘

er
m

ila
l,

P
r,

lo
7

20
0

50
-1

00

L3
a(

7)

C
E

R
N

LE

I’
4

x
10

6
>

12
0

48
-6

0

A
nt

ic
ip

at
ed

S

S
C

E

xp
er

irn
en

t(7
a)

IO

7
10

00

12
20

a
E

st
im

at
ed

b
C

on
st

ra
in

ed

by

lim
ite

d
co

m
pu

te
r

re
so

ur
ce

s

’
C

al
en

da
r

Y
ea

r
(C

Y
r)

in
cl

ud
es

ty

pi
ca

l
be

am

on

an
d

of
f

tim
es

dI

Id

IK
 u

es

 a
na

ly
si

s
an

d
si

m
ul

at
io

ns

Figure 1. Particle physics computer technology in 1930: The first
practical electronic AND gate, a Geiger Counter triple
coincidence circuit. Pulses yere “detected by a
telephone” and scaled manually.

I DETECTORS I Trigger rate
at L=3.10”30

150 kHz

il
a

100 Hz
2

a
20 Hz

Figure 2. Overview of the UAI multilevel trigger and data read
out system. The numbers at right give the surviving
event rate after each level of the trigger. Dead time is
< 10%.

SMfl Repisler Direction

- 1

Drill CeY
Shirt Regislers TRACK

1.7,
11*0.,

Figure 3. Mark II track finder mechanism. The effective mask for
accepting a track is defined by the delays (d.) necessary
to shift the curved track into a straight ‘line. Road
widths are defined by the w

i’

36

(b)

/ ” I,

&I lJ

J II

64

Inleper F.P.
s-n, Add/sub

II liu II NJ I
Mdlipl, Divide

d.1S.1

Figure 4. Block diagrams of two modern emulators.

37

L-1 @AX Ltl pVAX

Drw11-WA QVI-1

--IA I ’ I
CIVI-2 *Mb

MBrnry w-2

LnnE Bus
Rooi Crate

t

BVI CPLI

4 s VME Bus

Node Crate #l

1s T *

1 1 w
--.. crale)

Figure 5. Block diagram of first ACP Multiprocessor in the
Fermilab Computer Center.

(a

(b)

Branches ,

Figure 6. Lattice gauge processor architecture.
a
b
i

The Columbia 4x4 toroidal grid;
The Italian APE machine;

c IBM’s GFll;
d) ACP Multiprocessor.

